3rdye chrostras 2012 Solutions
Ql(a)

$$
\begin{aligned}
& \text { Perumeler: } 2 L+2 W=200 \\
& l+W=100 \\
& \text { Area }=1 \times w \\
& 60 \\
& 100 \div 5=20 . \\
& \Rightarrow \text { lengthi: } w=60: 40 \\
& =60 \times 40 \\
& \text { Area. }=2400 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) (1)

pythaceras

$$
\begin{aligned}
& (7.5)^{2}=(6)^{2}+R^{2} \\
& 56.25=36+R^{2} \\
& 20.25=R^{2} \\
& \sqrt{20.25}=R \\
& 4.5=R \\
& \text { Raduus }=4.5
\end{aligned}
$$

(50) $Q 1$
(ii) Tolal Sunfuce Area: Sides + Top. Carcle

$$
\begin{aligned}
& \pi R \cdot L+\pi R^{2} \\
= & \pi(4.5)(7.5)+\pi(4.5)^{2} \\
= & 54 \pi \\
= & 169.646 . \quad(169.600
\end{aligned}
$$

(Ci)

$$
\begin{aligned}
& \text { Volume of containee } \\
& \text { volof cylunder }+ \text { vol of he } \\
& \pi R^{2} H+\frac{2}{3} \pi R^{3} \\
& \pi(6)^{2}(14)+\frac{2}{3} \pi(6)^{3}
\end{aligned}
$$

Q3.

$$
v^{2}=u^{2}+2 a s \quad\left(A_{\text {im }} s=\ldots \ldots\right)
$$

a)

$$
\begin{aligned}
& v^{2}-u^{2}=2 a s \\
& v^{2}-u^{2}=s
\end{aligned}
$$

(b) (1) Faclörese $2 L-K L+K m-2 M$ (HCF Rule)
$2 L-K L-2 m+K m$ (needed to be rearranged

$$
\begin{gather*}
L(2-k)-m(2-K) \\
(L-m)(2-K)
\end{gather*}
$$

(11) Factorise:

$$
\begin{array}{ll}
6 x^{2}-19 x+10 \\
6 x^{2}-4 x-15 x+10 & \text { GN } \\
2 x(3 x-2)-5(3 x-2) & 230 \\
(2 x-5)(3 x-2) & -4-15 \tag{5}
\end{array}
$$

(111)

$$
\begin{array}{ll}
17 x-5 x^{2} \\
x(17-5 x) & {[H C F] .}
\end{array}
$$

(iv)

$$
\begin{array}{ll}
(2 x-1)^{2} & (x-1)^{2} \\
2 x(2 x-1)-1(2 x-1) & x(x-1)-1(x-1) \\
4 x^{2}-2 x-2 x+1 & x^{2}-1 x-1 x+1 \\
4 x^{2}-4 x+1 & x^{2}-2 x+1 \\
{\left[\begin{array}{ll}
\left.4 x^{2}-4 x+1\right] & x^{2}-2 x+1
\end{array}\right.} \\
4 x^{2}-4 x+1-x^{2}+2 x-1 \\
3 x^{2}-2 x
\end{array}
$$

(c)(i) $\frac{1}{x-1}+\frac{1}{x+1}$

Common denomenator

$$
(x-1)(x+1)
$$

Q3.

$$
v^{2}=u^{2}+2 a s \quad\left(A_{\text {im }} s=\ldots \ldots\right)
$$

a)

$$
\begin{aligned}
& v^{2}-u^{2}=2 a s \\
& v^{2}-u^{2}=s
\end{aligned}
$$

(b) (1) Faclörese $2 L-K L+K m-2 M$ (HCF Rule)
$2 L-K L-2 m+K m$ (needed to be rearranged

$$
\begin{gather*}
L(2-k)-m(2-K) \\
(L-m)(2-K)
\end{gather*}
$$

(11) Factorise:

$$
\begin{array}{ll}
6 x^{2}-19 x+10 \\
6 x^{2}-4 x-15 x+10 & \text { GN } \\
2 x(3 x-2)-5(3 x-2) & 230 \\
(2 x-5)(3 x-2) & -4-15 \tag{5}
\end{array}
$$

(111)

$$
\begin{array}{ll}
17 x-5 x^{2} \\
x(17-5 x) & {[H C F] .}
\end{array}
$$

(iv)

$$
\begin{array}{ll}
(2 x-1)^{2} & (x-1)^{2} \\
2 x(2 x-1)-1(2 x-1) & x(x-1)-1(x-1) \\
4 x^{2}-2 x-2 x+1 & x^{2}-1 x-1 x+1 \\
4 x^{2}-4 x+1 & x^{2}-2 x+1 \\
{\left[\begin{array}{ll}
\left.4 x^{2}-4 x+1\right] & x^{2}-2 x+1
\end{array}\right.} \\
4 x^{2}-4 x+1-x^{2}+2 x-1 \\
3 x^{2}-2 x
\end{array}
$$

(c)(i) $\frac{1}{x-1}+\frac{1}{x+1}$

Common denomenator

$$
(x-1)(x+1)
$$

$$
\begin{aligned}
& =\frac{1(x+1)}{(x-1)(x+1)}+\frac{1(x-1)}{(x+1)(x-1)} \\
& =\frac{x+1+x-1}{(x-1)(x+1)}=\frac{2 x}{(x-1)(x+1)}
\end{aligned}
$$

(II) hence.

$$
\begin{aligned}
& \frac{1}{x-1}+\frac{1}{x+1}=3 \\
& \frac{2 x}{(x-1)(x+1)}=\frac{3}{1} \\
& 2 x(1)=3(x-1)(x+1) \\
& 2 x=3(x(x+1)-1(x+1)) \\
& 2 x=3\left(x^{2}-1\right)
\end{aligned}
$$

$\xrightarrow{\text { move }}$

$$
2 x=3 x^{2}-3
$$

$$
x=\frac{3 x^{2}-2 x-3 \pm \sqrt{b^{2}-4 a c}}{2 a}=0 \quad a=3 \quad b=-2 \quad c=-3
$$

$$
x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(3)(-3)}}{2(3)}
$$

$$
x=\frac{2 \pm \sqrt{40}}{6}\left\{x=\frac{1 \pm \sqrt{10}}{3}\right)
$$

Q4 $f(x)=1-3 x$.
(1)

$$
\begin{aligned}
& F(x)=1-3 x \\
& F(-2)=1-3(-2)=1+6=7 \\
& \left.g(5)=1-x^{2}=1-(5)^{2}=-24\right)
\end{aligned}
$$

(11) $f(x+1)=1-3 x=1-3(x+1)=1-3 x-3$
(III)

$$
\begin{aligned}
& f(x+1)=f(-2)+g(5) \\
& -3 x-2=7+(-24) \\
& -3 x-2=-17 \quad-3 x=-15 \quad(x=5 \quad \mathrm{sm}
\end{aligned}
$$

(b)
(i)

$$
\begin{gathered}
L^{2}=h^{2}+R^{2} \\
5^{2}=(h)^{2}+(3)^{2} \\
25=h^{2}+9 \\
25-9=h^{2} \\
16=h^{2} \\
h=4
\end{gathered}
$$

pythagoras to find mining dimension in a triange
(11) $\frac{1}{3} \pi R^{2} H=\frac{1}{3}(\pi)(3)^{2}(.4)=12 \pi 5$
(c)

(i) $T+7=14$ (diamiter)
$5 m$
(ii) Shaded Requon =

Rectangle - Cercles
(III) $\frac{\text { Shaded Region }}{\text { Total area }}$

$$
L \times W-\pi R_{x}^{2} 2
$$

$$
(16 \pi)(14)-2(\pi)(7)^{2}
$$

$$
=\frac{126 \pi}{224 \pi}=\frac{9}{16} \times \frac{100}{1}=56.25 \%
$$

$$
224 \pi-98 \pi
$$

126π

(ii) mudpant

$$
\begin{array}{cc}
A(-4,1) & c(6,1) \\
x_{1} y_{1} & x_{2} y_{2}
\end{array}=\left(\frac{-4+6}{2}, \frac{1+1}{2}\right)=\left(\frac{2}{2}, \frac{2}{2}\right)=(1,1) \text { medpoint }
$$

D.
(iiI) Cirde drawn.
$5 m$
(iv) Show $\angle A B C$ is Right angle \Rightarrow PeRPendicular

Slope $1 \times$ Slope $2=-1$
Slope of $A B\left(\begin{array}{cc}-y_{1}, 1 & \left(-z_{1}, 5\right) \\ x_{1} y_{1} & x_{2} y_{2}\end{array}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-1}{-2--4}=\frac{4}{2}=2\right.$

Slope $1 \times$ Slope $2=(2) \times(-1 / 2)=1$ True so its Right angled.
(b) (1) $3 x-4 y-15=0$.sub point in

$$
\begin{array}{cc}
3(1)-4(-3)-15=0 & (1,-3) \\
3+12-15=0 & x \\
0=0 & \text { true }
\end{array}
$$

(ii) on x ans $y=0$

$$
\begin{aligned}
& 3 x-4 y-15=0 \\
& 3 x-4(0)-15=0 \\
& 3 x=15 \\
& x=5 \quad P(5,0)
\end{aligned}
$$

(vi) equation $y-y_{1}=m\left(x-x_{1}\right)$
$(1,-3) \quad$ li $3 x-4 y-5=0$
x, y, \quad slope of $l=\frac{-(a)}{b}=\frac{-3}{-4}$
1 Slope of $k=\frac{-4}{3}$.

$$
\begin{aligned}
& y--3=-\frac{4}{3}(x-1) \\
& 3 y+9=-4 x+4 \\
& 4 x+3 y+5=0
\end{aligned}
$$

(v) on my graph $(1,-3 \cdot 2)$ Sm
(vi)

$$
\begin{array}{ll}
\begin{array}{ll}
3 x-4 y-15=0 & (x 3)
\end{array} & 3 x-4 y-15=0 \\
4 x+3 y+5=0 & (\times 4)
\end{array} \begin{aligned}
& 3(1)-4 y-15=0 \\
& 9 x-12 y-45=0
\end{aligned}
$$

