Chapter 2 Algebra: The Basics
it's advisable to know/practice some of the examples in the book also.

Quadratic Equations:

To factorise/solve these we use

- Guide Number
- Highest Common Factor
- Perfect Squares
- Quadratic (- b) Formula
- Graphical Methods

Types of Quadratic Roots: $\left(\boldsymbol{b}^{2}-\mathbf{4 a c}\right)$ is known as the DISCRIMINANT

$b^{2}-4 a c>0$

$b^{2}-4 a c=0$

$b^{2}-4 a c<0$

1. If $\left(b^{2}-4 a c\right)>0 \rightarrow$ two different (distinct) real roots

In summary
2. If $\left(b^{2}-4 a c\right)=0 \rightarrow$ two equal real roots
3. If $\left(b^{2}-4 a c\right)<0 \rightarrow$ two imaginary roots
4. If $\left(b^{2}-4 a c\right)$ is a perfect square \rightarrow rational roots

Roots are real if $\left(b^{2}-4 a c\right) \geqslant 0$
NB:

Forming Quadratic Equations from their roots:

Given r_{1}, r_{2} as the roots of an equation, then the equation is

$$
x^{2}-x\left(r_{1}+r_{2}\right)+r_{1} r_{2}=0
$$

i.e. $x^{2}-x$ (sum of the roots) + product of the roots $=0$.

Solving Quadratic and Linear Equations:

(note: this is also a method to find the point of intersection between a circle and a line)
Step 1: Rewrite the linear equation (or simpler of the two equations) as $x=\ldots$ or $y=\ldots . .$.
Step2: Sub this $x=\ldots$. or $y=\ldots$ from step 1 into the OTHER EQUATION, simplify and solve it.
Step3: Sub the results from Step 2 into the first equation in step 1 to find the other letter

Forming a quadratic given the roots:
 $x^{2}-($ sum of the roots $) x+($ product of the roots $)=0$

Max \& Min of a Quadratic Graph:

Completing the square:

The quadratic $x^{2}-6 x+11$ can be rewritten as
$x^{2}-6 x+9-9+11$ (half the coefficient of the x value, square it, add and subtract it before the 11)
$x^{2}-6 x+9+2=0 \quad($
$(x-3)^{2}+2=0$
We can tell the following information from the equation written this way:
i) $\quad \mathrm{a}(\mathrm{x}-\mathrm{p})^{2}+\mathrm{q}=0 \quad(\mathrm{x}-3)^{2}+2=0$
(p, q) is the minimum value of the graph which is $(3,2)$ in this question
ii) $\mathrm{q}-\mathrm{a}(\mathrm{x}-\mathrm{p})^{2}=0 \quad 2-(\mathrm{x}-3)^{2}=0$
(p, q) is the maximum value of the graph, in this question it would be $(3,2)$
iii) By solving for x in $(x-3)^{2}+2=0$ we can work out if there are real or Imaginary roots (see pg 63 in book 6)
(i) Write the equation of the graph provided in the form $y=q-a(x-p)^{2}$, where (p, q) is the maximum point of the curve and a is a constant.
(ii) By choosing any suitable point on the curve, find a.
(iii) Hence write the equation in the form $y=a x^{2}+b x+c$.
(i) The maximum point $=(-1,3)=(p, q)$.

$$
\begin{aligned}
& y=q-a(x-p)^{2} \\
\therefore \quad y & =3-a(x+1)^{2}
\end{aligned}
$$

(ii) Selecting $(x, y)=(1,1)$,

$$
\begin{aligned}
\Rightarrow 1 & =3-a(1+1)^{2} \\
& =3-4 a \\
\Rightarrow a & =\frac{1}{2}
\end{aligned}
$$

(iii) $\therefore \quad y=3-\left(\frac{1}{2}\right)(x+1)^{2}$
$\therefore \quad y=3-\frac{x^{2}}{2}-x-\frac{1}{2}$

$$
=-\frac{x^{2}}{2}-x+2 \frac{1}{2}
$$

Surds:

1. Reducing surds to their lowest form
$\sqrt{5}, \sqrt{6}, \sqrt{7}$ cannot be simplified further,

$$
\sqrt{a b}=\sqrt{a} \times \sqrt{b}
$$

but $\sqrt{8}=\sqrt{4 \times 2}=\sqrt{4} \times \sqrt{2}=2 \sqrt{2}$, since 8 has a factor that is a perfect square.

2. Simplifying surd quotients

$\sqrt{\frac{50}{64}}=\frac{\sqrt{50}}{\sqrt{64}}=\frac{\sqrt{25} \times \sqrt{2}}{8}=\frac{5 \sqrt{2}}{8}$

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

3. Adding or subtracting surds

$$
a \sqrt{b} \pm c \sqrt{b}=(a \pm c) \sqrt{b}
$$

$2 \sqrt{3}+4 \sqrt{3}=6 \sqrt{3}$.
$\sqrt{27}-\sqrt{12}=\sqrt{9 \times 3}-\sqrt{4 \times 3}=3 \sqrt{3}-2 \sqrt{3}=\sqrt{3}$.

4. Multiplying surds

$\sqrt{4} \times \sqrt{4}=(\sqrt{4})^{2}=4$.

$$
\sqrt{a} \times \sqrt{b}=\sqrt{a b}
$$

$\sqrt{5} \times \sqrt{6}=\sqrt{30}$.

$$
(7-\sqrt{2})(7+\sqrt{2})=49+7 \sqrt{2}-7 \sqrt{2}-2=47
$$

5. Dividing by surds

It is normal practice to not leave a surd (an irrational number) in the denominator of a quotient, hence the practice of "rationalising the denominator".
$\frac{5}{\sqrt{3}}=\frac{5}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{5 \sqrt{3}}{3}$ (Note: Multiplying by $\frac{\sqrt{3}}{\sqrt{3}}$ is equivalent to multiplying by 1.)

$$
\frac{1}{7-\sqrt{2}}=\frac{1}{7-\sqrt{2}} \cdot \frac{7+\sqrt{2}}{7+\sqrt{2}}
$$

$$
=\frac{7+\sqrt{2}}{7^{2}-\sqrt{2^{2}}}=\frac{7+\sqrt{2}}{47}
$$

To rationalise the denominator:

$$
\frac{1}{a-\sqrt{b}}=\frac{1}{a-\sqrt{b}} \cdot \frac{a+\sqrt{b}}{a+\sqrt{b}}
$$

Main rules/method:

- If there is only one surd, isolate it on one side and then square both sides and solve.
- If there are two surds, move one to each side of the equation. Square both sides and isolate any remaining surds. Square both sides again to remove any remaining surd.
- Solve the resulting equation.
- Check your answers.

Note: It is important to check ALL solutions in the ORIGINAL equation

The Factor Theorem:

The Factor Theorem:

If $f(k)=0$, then $(x-k)$ is a factor.
Conversely, if $(x-k)$ is a factor, then $f(k)=0$.
Also, if $(\alpha x-k)$ is a factor, then $f\left(\frac{k}{\alpha}\right)=0$.

- A value is a root if we get 0 when we sub it into the equation
- Eg: If $x=2$ is a root, then $x-2$ is the factor
- Long division and solving will find other roots
- Use trial and error if no roots given to begin with

Types of roots of Cubic Polynomials

1. Three real roots
$f(x)=2 x^{3}-4 x^{2}-22 x+24$
$f(x)=(x-1)(2 x+6)(x-4)$
This graph has three real roots, $-3,1,4$.

As the graph passes through a root, the value of the function changes from $(-)^{\mathrm{ve}}$ to $(+)^{\mathrm{ve}}$ or $(+)^{\mathrm{ve}}$ to $(-)^{\mathrm{ve}}$.
The graph has two turning points, a local maximum and a local minimum.

2. Three real roots, two of which repeat

$f(x)=x^{3}-x^{2}-8 x+12$

$$
=(x+3)(x-2)^{2}
$$

This graph again has three real roots, $-3,2,2$, but one of the roots is repeated.
This graph only crosses the x-axis once because of the repeated root.
The graph has two turning points.

$$
\begin{array}{r}
f(x)=x^{3}-x^{2}-8 x+12 \\
=(x+3)(x-2)(x-2) \\
=(x+3)(x-2)^{2}
\end{array}
$$

3. One real, two imaginary roots

$$
\begin{aligned}
f(x) & =x^{3}-2 x-4 \\
& =(x-2)\left(x^{2}+2 x+2\right) \quad \text { using the } \\
& =(x-2)(x+1-\sqrt{-1})\left(x^{2}+1+\sqrt{-1}\right)
\end{aligned}
$$

This polynomial has only one real root and two imaginary roots.
It crosses the x-axis once and has two turning points.

$f(x)=x^{3}-2 x-4$
$=(x-2)\left(x^{2}+2 x+2\right)$
4. Comparing $f(x)=x^{3}-3 x^{2}+2 x$ and $g(x)=2 x^{3}-6 x^{2}+4 x=2 f(x)$

Both polynomials have the same roots, $x=0,1,2$. \therefore the polynomials have common factors (x), $(x-1)$ and $(x-2)$.
But $g(x)$ has an integer factor 2 as well that multiplies each value of the curve, except where the value is zero at the roots.

This integer factor acts as an amplification factor.
5. Comparing $f(x)=x^{3}-3 x^{2}+2 x$ and $g(x)=-x^{3}+3 x^{2}-2 x=-f(x)$ Again, both polynomials have the same roots and hence common factors. The graphs are symmetrical across the x-axis.

6. The graphs of $f(x)=a x^{3}$

All the graphs pass through $(0,0)$.
For $a>0$, the graphs are all increasing, and as a increases, the graphs rise more steeply.
For $a<0$, the graphs are decreasing.
Note:
(i) If $f(x)=3 x^{3}$ and $g(x)=-3 x^{3}$,
$\Rightarrow f(x)=-g(x)$, i.e. $f(x)$ is the reflection of $g(x)$ in the x-axis.
(ii) $f(-x)=g(x)$, i.e. $f(x)$ and $g(x)$ reflect each other in the y-axis.

Note: There are no local maximum or minimum points as in the previous graphs.

