F McMenamin, B Nyhan

<u>Argand Diagram</u>: is the graph of a complex number with a real and imaginary axis

<u>Modulus:</u> $\sqrt{(a)^2 + (b)^2}$ this finds the distance of a complex number from the origin $|-2 + 2i| = \sqrt{(-2)^2 + (2)^2} = \sqrt{8}$

Conjugate Roots Theorem:

The roots (i.e the solution to the -b formula) of a quadratic equation occur in conjugate pairs if all the coefficients are **<u>REAL</u>**

 $Z^2 - 4Z + 5 = 0$ has the roots 2 + i and 2 - i (a conjugate pair) because the coefficients 1, -4 and 5 are all <u>REAL</u>

To form a quadratic equation when given the roots we use

Z^2 - (sum of roots) Z + (product of roots) = 0

<u>Cartesian Form</u>: is a complex number written in form x + yi

<u>Polar Form</u>: is a complex number is an equation written in form $r(\cos\theta + i\sin\theta)$ Where **r** is the modulus length and θ is the angle the complex number makes with the positive x axis.

See page 118/119 in your text book 6

*We use Tan⁻¹ (2nd function on the calculator) to work out the angle and give our angle θ in radian mode <u>not</u> degrees remember $\Pi = 180$ degrees

Transformations of Complex Numbers:

1. Multiplying a complex number by a real number

If a complex number $z_1 = 3 + 2i$ is multiplied by 4, we get $4z_1 = 4(3 + 2i) = 12 + 8i$. The real part is increased by a factor of 4 and the imaginary part is also increased by a factor of 4.

The complex number appears to be **stretched** along a line from the origin by a factor of 4.

2. Multiplying by i

When a complex number such as 4 + i is multiplied by *i*, the complex number rotates anti-clockwise about the origin by a quarter of a turn.

For example,
$$(4 + i).i = 4i + i^2$$

= $4i - 1$
= $-1 + 4i$
... a rotation of 90°

- z imes i , z rotates by 90°
- $z imes (i)^2$, z rotates by 180°
- $z \times (i)^3$, z rotates by 270°
- $z \times (i)^4$, z rotates by 360°
- $z \times (-i)$, z rotates by (-90°)

3. Adding complex numbers

(i) When a complex number z is added separately to other complex numbers $-z_1, z_2, z_3$ it creates a **translation of the plane.**

Let z = -2 + 3iand $z_1 = 3 + 2i$, $z_2 = 1 + 4i$, $z_3 = 2 - 2i$. Then $z + z_1 = -2 + 3i + 3 + 2i = 1 + 5i$ $z + z_2 = -2 + 3i + 1 + 4i = -1 + 7i$ $z + z_3 = -2 + 3i + 2 - 2i = i$

