Complex Numbers Notes Leaving Cert Higher

Irrational Number:

Any real number that can't be expressed in form $\frac{a}{b}$, where a and b are integers.

Note: b can't be zero examples of rational numbers
are $\sqrt{5}, \Pi \approx 3.141592654$.
Constructions: page $94+95$ should be known

Adding / Subtracting Complex Numbers:

Add real to real and imaginary to imaginary $(3+2 i)+(1-5 i)=4-3 i$

Multiplying Complex Numbers:

$(3+5 i)(4-3 i)=3(4-3 i)+5 i(4-3 i)=27+11 i$
Split brackets and multiply remember $i^{2}=-1$ also $i^{3}=-i \quad i^{4}=1 \quad i^{5}=i$ etc
Dividing Complex Numbers: Use if there is an ' i ' in the denominator
Use the conjugate rule to multiply numerator and denominator
$\frac{3+4 i}{2-5 i}=\frac{3+4 i}{2-5 i} \times \frac{2+5 i}{2+5 i}=-\frac{14}{29}+\frac{23}{29} i$

Solving equations:

Eg: Solve $x^{2}+2 x+2=0$ use the $-b$ formula $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Note $i=\sqrt{-1}=i \quad \sqrt{-16}=4 i \quad \sqrt{-4}=2 i$ etc
Argand Diagram: is the graph of a complex number with a real and imaginary axis
Modulus: $\sqrt{(\mathbf{a})^{2}+(\mathbf{b})^{2}}$ this finds the distance of a complex number from the origin
$|-2+2 i|=\sqrt{(-2)^{2}+(2)^{2}}=\sqrt{8}$

Conjugate Roots Theorem:

The roots (i.e the solution to the -b formula) of a quadratic equation occur in conjugate pairs if all the coefficients are REAL
$Z^{2}-4 Z+5=0$ has the roots $2+i$ and $2-i($ (a conjugate pair) because the coefficients $1,-4$ and 5 are all REAL

To form a quadratic equation when given the roots we use
Z^{2} - (sum of roots) $Z+$ (product of roots) $=0$
Cartesian Form: is a complex number written in form $x+y i$

Polar Form: is a complex number is an equation written in form $\underline{\mathbf{r}(\cos \theta+\boldsymbol{i} \sin \theta)}$
Where r is the modulus length and θ is the angle the complex number makes with the positive x axis.
See page 118/119 in your text book 6
*We use Tan^{-1} (2 $2^{\text {nd }}$ function on the calculator) to work out the angle and give our angle $\boldsymbol{\theta}$ in radian mode not degrees remember $\boldsymbol{\Pi}=180$ degrees

Transformations of Complex Numbers:

1. Multiplying a complex number by a real number

If a complex number $z_{1}=3+2 i$ is multiplied by 4 , we get $4 z_{1}=4(3+2 i)=12+8 i$.
The real part is increased by a factor of 4 and the imaginary part is also increased by a factor of 4 .

The complex number appears to be stretched along a line from the origin by a factor of 4 .

2. Multiplying by i

When a complex number such as $4+i$ is multiplied by i, the complex number rotates anti-clockwise about the origin by a quarter of a turn.
For example, $(4+i) \cdot i=4 i+i^{2}$

$$
\begin{aligned}
& =4 i-1 \\
& =-1+4 i
\end{aligned}
$$

... a rotation of 90°

```
z}\timesi,z\mathrm{ rotates by }9\mp@subsup{0}{}{\circ
z\times(i)}\mp@subsup{)}{}{2},z\mathrm{ rotates by 180
z\times(i\mp@subsup{)}{}{3},z rotates by 270
z}\times(i\mp@subsup{)}{}{4},z\mathrm{ rotates by 360}\mp@subsup{}{}{\circ
z}\times(-i),z\mathrm{ rotates by ( }-9\mp@subsup{0}{}{\circ}
```


3. Adding complex numbers

(i) When a complex number z is added separately to other complex numbers $-z_{1}, z_{2}, z_{3}-$ it creates a translation of the plame.

Let $z=-2+3 i$
and $z_{1}=3+2 i, z_{2}=1+4 i, z_{3}=2-2 i$.
Then $z+z_{1}=-2+3 i+3+2 i=1+5 i$ $z+z_{2}=-2+3 i+1+4 i=-1+7 i$ $z+z_{3}=-2+3 i+2-2 i=i$

