Functions and Graphs solution

(a)	i.	f(-2) = 1 - 3(-2) = 1 + 6 =	= <mark>7</mark> g(5) = 1 - (5) ² = 1 - 25 = <mark>-24</mark>
	ii.	f (x + 1) = 1 - 3 (x + 1) =	
		1 - 3x - 3 =	
		<mark>-3x - 2</mark>	
	iii.	f (x + 1) = f(-2) + g (5)	NB: CARRY ANSWERS FORWARD, look for link in the questions
		-3x - 2 = 7 + (-24)	Solve means find x, remember.
		-3x = 7 - 24 + 2	
		-3x = -15	
		3x = 15	
		<mark>× = 5</mark>	
(b)			

The other side $10 - x - x = \frac{10 - 2x}{10 - 2x}$ i. ii. Area = L x W (5 - x)(10 - 2x) split the brackets $5(10 - 2x) - x(10 - 2x) = 50 - 10x - 10x + 2x^2 =$ Area = $\frac{50 - 20x + 2x^2}{2}$

iii.
$$f(x) = 50 - 20x + 2x^2$$

 $f(0) = 50 - 20(0) + 2(0)^2 = 50$ (0, 50)
 $f(1) = 50 - 20(1) + 2(1)^2 = 32$ (1, 32)
 $f(2) = 50 - 20(2) + 2(2)^2 = 18$ (2, 18)
 $f(3) = 50 - 20(3) + 2(3)^2 = 8$ (3, 8)
 $f(4) = 50 - 20(4) + 2(4)^2 = 2$ (4, 2)
 $f(5) = 50 - 20(5) + 2(5)^2 = 0$ (5, 0)

iv. Area =
$$\frac{25 \text{ m}^2}{(c) \text{ Rule: sub in points you see on graph into the function}}$$

(i) $F(x) = x^2 + qx + p$

(-1,0)
$$0 = (-1)^2 + q(-1) + p$$

 $0 = 1 - q + p$ $q - p = 1$

(2,0)
$$0 = (2)^2 + q(2) + p$$

 $0 = 4 + 2q + p$ $2q + p = -4$

Simultaneous equations:

q - p = 1	q = -1	q – p = 1
<u>2q + p = -4</u>		-1 - p = 1
3q = -3		-1 - 1 = p
<mark>q = -1</mark>		<mark>p =-2</mark>

(ii) (t, 5t-2) is ON the graph so we SUB it into the function

 $F(x) = x^{2} + qx + p$ $F(x) = x^{2} - 1x - 2 \quad \text{sub in t for } x \quad \text{and} \quad 5t - 2 \text{ for } y$ $5t - 2 = t^{2} - t - 2$ $t^{2} - t - 2 - 5t + 2 = 0$ $t^{2} - 6t = 0 \quad \text{factorise and solve using HCF rule or - b formula, remember c would = 0}$ t(t - 6) = 0 $t = 0 \quad \text{or } t - 6 = 0 \quad \text{so } t = 0 \quad \text{or } t = 6$