Functions and Graphs solution

(a) i. $f(-2)=1-3(-2)=1+6=7$
$g(5)=1-(5)^{2}=1-25=-24$
ii. $\quad f(x+1)=1-3(x+1)=$

$$
\begin{aligned}
& 1-3 x-3= \\
& -3 x-2
\end{aligned}
$$

iii. $\quad f(x+1)=f(-2)+g(5) \quad$ NB: CARRY ANSWERS FORWARD, look for link in the questions

$$
\begin{aligned}
& -3 x-2=7+(-24) \quad \text { Solve means find } x, \text { remember. } \\
& -3 x=7-24+2 \\
& -3 x=-15 \\
& 3 x=15 \\
& x=5
\end{aligned}
$$

(b)
i. The other side

$$
10-x-x=10-2 x
$$

ii. Area $=L \times W \quad(5-x)(10-2 x) \quad$ split the brackets

$$
\begin{aligned}
& 5(10-2 x)-x(10-2 x)=50-10 x-10 x+2 x^{2}= \\
& \text { Area }=50-20 x+2 x^{2}
\end{aligned}
$$

iii. $f(x)=50-20 x+2 x^{2}$
$f(0)=50-20(0)+2(0)^{2}=50$
$f(1)=50-20(1)+2(1)^{2}=32$
$f(2)=50-20(2)+2(2)^{2}=18$
$f(3)=50-20(3)+2(3)^{2}=8$
$f(4)=50-20(4)+2(4)^{2}=2$
$f(5)=50-20(5)+2(5)^{2}=0$

iv. \quad Area $=25 \mathrm{~m}^{2}$
vi. $\quad X=2.5 \mathrm{~m}$
(c) Rule: sub in points you see on graph into the function
(i) $F(x)=x^{2}+q x+p$
$(-1,0)$

$$
\begin{aligned}
& 0=(-1)^{2}+q(-1)+p \\
& 0=1-q+p \quad q-p=1
\end{aligned}
$$

$(2,0)$

$$
\begin{aligned}
& 0=(2)^{2}+q(2)+p \\
& 0=4+2 q+p \quad 2 q+p=-4
\end{aligned}
$$

Simultaneous equations:

$q-p=1$
$q=-1$
$q-p=1$
$2 q+p=-4$
$-1-p=1$
$3 q=-3$
$-1-1=p$
$q=-1$
$p=-2$
(ii) $(t, 5 t-2)$ is ON the graph so we $S \cup B$ it into the function
$F(x)=x^{2}+q x+p$
$F(x)=x^{2}-1 x-2$ sub intfor x and $5 t-2$ for y
$5 t-2=t^{2}-t-2$
$t^{2}-t-2-5 t+2=0$
$t^{2}-6 t=0$ factorise and solve using HCF rule or $-b$ formula, remember c would $=0$
$t(t-6)=0$
$t=0$ or $t-6=0$

$$
\text { so } t=0 \text { or } t=6
$$

